
Can Beautiful Languages
Do Access Control?

Gilad Bracha & Ryan Macnak
Ministry of Truth

Newspeak Can!

I’ll explain how, and why it is interesting

Access Control is Messy

Mostly dealt with statically

Difficulties with binary compatibility,
dynamic loading, reflection

Runtime must be involved (e.g., Java)

Dynamically typed languages tend to ignore
the issue, or have very limited access
control

Object-based vs. Class-based
Encapsulation

In object-based encapsulation, privacy is
per object

In class-based encapsulation, privacy is per
class

Class-based
Encapsulation

class C {
 private int secret = 101;
 int extractFrom(C c) {
 return c.secret;
 }
}

Object-based
Encapsulation

class C {
 private int secret = 101;
 int extractFrom(C c) {
 return c.secret; // error
 }
}

Genealogy of Newspeak

Smalltalk

Newspeak

Self Beta

Scala
E

Newspeak 101

Modularity

Security

Reflectivity

Interoperability

Goals

Newspeak is a dynamic, class
based language with two
defining properties:

 All names are late bound

No global namespace

Newspeak

All names are late bound

No global namespace

Newspeak

Every run time operation is a
message send.

Message-based
Programming

Every run time operation is a
virtual method call.

Translation

No References to Fields

Each slot declaration introduces getter method;
If slot is mutable, also introduces setter, e.g.,

t = 5.

v ::= ‘abc’.

Slots

No code depends on our choice of storage
representation:

 Not clients

 Not subclasses

Not even the class itself

Representation Independence

All object properties are accessed the same
way

No distinction between methods and
getters/setters

No need to remember which is which

No need to choose which to use

Uniform Reference

 Always use accessors

 Classes are first class objects

 Classes are always virtual

 Classes are always mixins

 Class hierarchy inheritance

No References to Classes

All names are late bound

No global namespace

Newspeak

 Newspeak modularity is
based exclusively on classes

 No packages, modules, bundles,
templates ...

Nested Classes

Modularity

Security

Reflectivity

Interoperability

Goals

 Module definition = Class not nested within another class

 No access to surrounding namespace

 All names locally declared or inherited from Object

External Dependencies
are Explicit

 Factory method parameters are objects/
capabilities that determine per-module
sandbox

Modules are Sandboxes

Modules are objects, accessed
via an interface

Different implementations can
co-exist

Multiple
Implementations

Module definitions are instantiated into
stateful objects known as modules

Easy to create multiple instances, with
different parameters

Side by Side

platform:: Platform new.

m1:: NewspeakParsing
 using: platform
 parseLib: (CombinatorialParsing
 usingLib: platform)

m2:: NewspeakParsing
 using: platform
 parseLib: (PackratParsing usingLib: platform)

Side by Side Modules

Module definitions are deeply immutable

 Modules cannot step on each other’s state

Modules are Re-entrant

Modularity

Security

Reflectivity

Interoperability

Goals

Security

Object-capability model (Miller06)

Object reachability defines authority

Security

Object-capability model (Miller06)

Object reachability defines authority

No static state

No Ambient Authority

Object-capability model (Miller06)

Object reachability defines authority

No static state

No Ambient Authority

Access control

Security

Access Control in
Newspeak

Access control interacts with lexical
structure (class nesting) and inheritance

The Comb Rule

00 01 02 03

10 11 12 13

20 21 22 23

inheritance chain ----->

^
|
L
e
x
i
c
a
l

c
h
a
i
n

The Comb Rule

00 01 02 03

10 11 12 13

20 21 22 23

inheritance chain ----->

^
|
L
e
x
i
c
a
l

c
h
a
i
n

The Comb Rule

00 01 02 03

10 11 12 13

20 21 22 23

inheritance chain ----->

^
|
L
e
x
i
c
a
l

c
h
a
i
n

The Comb Rule

00 01 02 03

10 11 12 13

20 21 22 23

inheritance chain ----->

^
|
L
e
x
i
c
a
l

c
h
a
i
n

The Comb Rule

00 01 02 03

10 11 12 13

20 21 22 23

inheritance chain ----->

^
|
L
e
x
i
c
a
l

c
h
a
i
n

The Comb Rule

00 01 02 03

10 11 12 13

20 21 22 23

inheritance chain ----->

^
|
L
e
x
i
c
a
l

c
h
a
i
n

The Comb Rule

00 01 02 03

10 11 12 13

20 21 22 23

inheritance chain ----->

^
|
L
e
x
i
c
a
l

c
h
a
i
n

The Comb Rule

00 01 02 03

10 11 12 13

20 21 22 23

inheritance chain ----->

^
|
L
e
x
i
c
a
l

c
h
a
i
n

The Comb Rule

00 01 02 03

10 11 12 13

20 21 22 23

inheritance chain ----->

^
|
L
e
x
i
c
a
l

c
h
a
i
n

The Comb Rule

00 01 02 03

10 11 12 13

20 21 22 23

inheritance chain ----->

^
|
L
e
x
i
c
a
l

c
h
a
i
n

The Comb Rule

00 01 02 03

10 11 12 13

20 21 22 23

inheritance chain ----->

^
|
L
e
x
i
c
a
l

c
h
a
i
n

The Comb Rule

00 01 02 03

10 11 12 13

20 21 22 23

inheritance chain ----->

^
|
L
e
x
i
c
a
l

c
h
a
i
n

The Comb Rule

00 01 02 03

10 11 12 13

20 21 22 23

inheritance chain ----->

^
|
L
e
x
i
c
a
l

c
h
a
i
n

A Problem
class Sup ()()
class Outer = (
 m = (^91)
 public class Inner = Sup () (
 public foo = (^m)
 “case 1:Outer new Inner new foo = 91”
)
)

When Code Evolves
class Sup { int m { return 42;}}
class Outer {
 int m() { return 91;}
 class Inner extends Sup {
 int foo() {return m();}
 // case 2: new Outer.Inner().foo() = 42
 }
}

Searching for m

Inner Sup

Outer

inheritance chain ----->

^
|
L
e
x
i
c
a
l

c
h
a
i
n

Object

Object

Searching for m

Inner Sup

Outer

inheritance chain ----->

^
|
L
e
x
i
c
a
l

c
h
a
i
n

Object

Object

Success!

Priority to Lexical
Scope

Newspeak gives priority to lexically visible
declarations

The Newspeak Rule

00 10 20 30

01

02

inheritance chain ----->

^
|
L
e
x
i
c
a
l

c
h
a
i
n

The Newspeak Rule

00 10 20 30

01

02

inheritance chain ----->

^
|
L
e
x
i
c
a
l

c
h
a
i
n

The Newspeak Rule

00 10 20 30

01

02

inheritance chain ----->

^
|
L
e
x
i
c
a
l

c
h
a
i
n

The Newspeak Rule

00 10 20 30

01

02

inheritance chain ----->

^
|
L
e
x
i
c
a
l

c
h
a
i
n

The Newspeak Rule

00 10 20 30

01

02

inheritance chain ----->

^
|
L
e
x
i
c
a
l

c
h
a
i
n

The Newspeak Rule

00 10 20 30

01

02

inheritance chain ----->

^
|
L
e
x
i
c
a
l

c
h
a
i
n

The Newspeak Rule

00 10 20 30

01

02

inheritance chain ----->

^
|
L
e
x
i
c
a
l

c
h
a
i
n

Priority to Lexical
Scope

Newspeak gives priority to lexically visible
declarations

But once a lexical level has been selected,
inheritance can have an effect; lexical
declaration can be overridden

Real Hierarchies

Can be more complex

Lexical hierarchy may be subclassed
differently at different levels

Superclasses may in the same or different
lexical hierarchies

Real Hierarchies

01 02 03

12 13

20 21 22

inheritance chain ----->

^
|
L
e
x
i
c
a
l

c
h
a
i
n

Access Control in
Newspeak

Newspeak provides three levels of
accessibility:

Public

Protected

Private

Access Control in
Newspeak

Private and protected members can be
seen by nested classes

Enclosing classes cannot see private or
protected members of nested classes

Subclasses are never aware of private
members of superclasses and vice versa

Access Control in
Newspeak

An object may access a protected member
only if

it is a member of the object or

A lexically visible member of an
enclosing object

Ordinary Sends

e msg (* aka e.msg *)

Lookup msg in class of receiver; if public, execute. If
protected fail (DNU). Ignore private versions
If not found, recurse upwards (until Object).

Self Sends

self msg (* aka this.msg *)

If the immediately enclosing class declares a private
msg, execute it
Otherwise, lookup public or protected msg in class
of the receiver; ignore private versions
If not found, recurse upwards (until Object).

Super Sends

super msg (* aka super.msg *)

Lookup public or protected msg in superclass of
receiver; ignore private versions.
If not found, recurse upwards (until Object).

Enclosing Objects

anOuter

1
Outer

anOuter

2

InnerInner

anInner1 anInner2

Legend

an

Object

a

Class instance-of enclosing-object nested class

Enclosing Objects

o2 C2

o3

o0 C0

o1 C1

S1

S0

S2

class S0

class S1

class S2

class S3

Implicit Receiver Sends

msg (* aka msg *)

Lookup declaration of msg in immediately surrounding
class.
If not found, recurse up lexical scope until top.

The Newspeak Rule

00 10 20 30

01

02

inheritance chain ----->

^
|
L
e
x
i
c
a
l

c
h
a
i
n

The Newspeak Rule

00 10 20 30

01

02

inheritance chain ----->

^
|
L
e
x
i
c
a
l

c
h
a
i
n

The Newspeak Rule

00 10 20 30

01

02

inheritance chain ----->

^
|
L
e
x
i
c
a
l

c
h
a
i
n

Implicit Receiver Sends

msg (* aka msg *)

If a lexically visible declaration has been found, then if
msg is private, execute.
If msg is not private, let r be corresponding enclosing
object. lookup public or protected msg in class of r
if not found recurse upwards (until Object).

Implicit Receiver Sends

msg (* aka msg *)

If no lexically visible declaration was found, lookup
public or protected msg in superclass of receiver;
ignore private versions.
If not found, recurse upwards (until Object).

The Newspeak Rule

00 10 20 30

01

02

inheritance chain ----->

^
|
L
e
x
i
c
a
l

c
h
a
i
n

The Newspeak Rule

00 10 20 30

01

02

inheritance chain ----->

^
|
L
e
x
i
c
a
l

c
h
a
i
n

The Newspeak Rule

00 10 20 30

01

02

inheritance chain ----->

^
|
L
e
x
i
c
a
l

c
h
a
i
n

Status &
Implementation

Access control implemented in both
Newspeak-to-Javascript compiler and in
Newspeak VM interpreter (but not yet in
JIT).

Each send has corresponding byte code in
VM version

Platform mostly converted

Experience

The Newspeak platform includes GUI, IDE,
Core libraries.

Code base developed without access
control

Conversion effort: a few person weeks

In some cases we have over publicized

Further Reading

http://newspeaklanguage.org

ECOOP 2010 paper is under documents

http://newspeaklanguage.org

Self

Smalltalk

Beta, gBeta, Virtual Classes

PLT Scheme/Units

Scala

ML

CLU, Modula, Ada, Oberon ...

Much more

Related Work

Peter Ahe

Vassili Bykov

Felix Geller

Yaron Kashai

Matthias Kleine

Ryan Macnak

Bill Maddox

Eliot Miranda

Credits
Philipp Tessenow

Bob Westergaard

Joshua
Benuck

Nikolay
Botev

Luis Diego
Fallas

John
Hedditch

Raffaello
Giulietti

Yardena
Meymann

Stephen Pair

David Pennell

Steve Rees

Vadim Tsushko

Volunteers

This file is licensed under the Creative Commons
Attribution ShareAlike 3.0 License. In short: you are
free to share and make derivative works of the file
under the conditions that you appropriately attribute it,
and that you distribute it only under a license identical
to this one. Official license.

The Newspeak eye used in the bullets, slide
background etc. was designed by Victoria Bracha and is
used by permission. Newspeak doubleplusgood logo
designed by Hila Rachmian and used by permission.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/3.0/

Backup

Classes and Mixins

an Outer Outer
Outer

mixin

Object

mixin

Top

Object

Outer Sends

outer N msg (* no obvious analog *)

Find innermost enclosing class named C. If a private
msg is defined in C, execute.
If not found, let r be corresponding enclosing object.
Lookup public or protected msg in class of r; ignore
private versions.
If not found, recurse upwards (until Object).

Observations

self msg ~ outer C msg
where C is immediately enclosing class

msg ~ outer N msg

where N is innermost lexically enclosing class that declares
msg

Common Operations

Protected lookup
Lookup public or protected msg in a class;
ignore private versions.
If not found, recurse up the class hierarchy
(until Object).

Used in super, outer (and self/implicit receiver)
sends

Common Operations

Find enclosing object
Lookup msg in class of receiver; if public,
execute. If protected fail (DNU). Ignore private
versions.

Used in ordinary sends

